
Runtime Verification Method for Self-Adaptive Software
using Reachability of Transition System Model

Euijong Lee
Korea University

Seoul, Republic of Korea

kongjjagae@korea.ac.kr

Young-Gab Kim*
Sejong University

Seoul, Republic of Korea

alwaysgabi@sejong.ac.kr

Young-Duk Seo
Korea University

Seoul, Republic of Korea

seoyoungd@korea.ac.kr

Kwangsoo Seol
Korea University

Seoul, Republic of Korea

seolks@korea.ac.kr

Doo-Kwon Baik*
Korea University

Seoul, Republic of Korea

baikdk@korea.ac.kr

ABSTRACT1
Self-adaptive software can change its own behavior in order to
achieve an intended objective in a changing environment.
Consequently, self-adaptive software requires practical runtime
verification and validation. We propose an approach for runtime
verification of self-adaptive software by using a designed
transition system model. The proposed approach consists of two
phases: pre-computing phase and runtime phase. In the pre-
computing phase, we assume that the self-adaptive software is
designed as a transition system. In this phase, the proposed
approach translates the designed transition system into equations
for runtime verification. For translation, we suggest an
algorithm based on state elimination and reachability. After the
pre-computing phase, the results of the translated equations are
verified in the runtime phase. In order to demonstrate the
suitability of our proposed approach, we performed experiments
to evaluate the performance of the pre-processing phase and the
runtime phase. In comparison with other model-checking tools,
our approach achieved excellent results.

CCS Concepts
• Software and its engineering → Software verification and
validation • Software and its engineering → Model-driven
software engineering

Keywords
Self-adaptive software, transition system, model checking.

* Corresponding authors

1. INTRODUCTION
In recent times, the emergence of various software platforms has
resulted in a varied software environment. Further, owing to
developments in mobile devices and Internet of Things (IoT),
software systems must operate in various environments. Self-
adaptive software aims to change its own behavior or structure
in a changing environment at runtime [1]. The characteristics of
self-adaptive software make it suitable for adoption in the
current scenario that requires software to operate in various
environments. Design model and verification are important
elements in self-adaptive software. Further, the demand for
research related to practical verification at runtime has increased
[2, 3]. Model checking is an effective static verification method
to verify software described by a transition system [2-4].
Although model checking demonstrates excellent verification
performance, it has a major problem known as the state
explosion problem. However, in spite of this limitation, the
method has been applied in various studies to verify self-
adaptive software [5-10]. The challenges in earlier studies
include unsuitability at runtime, state explosion problems, or the
absence of a mechanism to apply real software. In order to solve
such problems, we propose a self-adaptive software framework
with runtime verification of the transition system. The proposed
approach consists of two phases: a pre-computing phase that is
responsible for the design and extraction of the transition system
model for runtime performance, and a runtime phase that is
responsible for monitoring and analyzing the designed transition
model at runtime. We performed an empirical evaluation to
demonstrate the excellent performance of our proposed
approach.

2. RELATED WORK
In this section, we introduce several previous studies related to
model checking on self-adaptive software and discuss their
differences to the proposed approach. A study used model
checking for verification of software modeling. It used model
checking to evaluate resilience [7]. This study describes
software and its requirements in terms of a model and
computational tree logic (CTL). The model and CTL equation
are used to evaluate the resilience after the adaptive activity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’17, April 3-7, 2017, Marrakesh, Morocco.
Copyright 2017 ACM 978-1-4503-4486-9/17/04…$15.00.

DOI: http://dx.doi.org/10.1145/3019612.3019851

65

ends. This study used model checking with its characteristics.
Another study describes self-adaptive software in the form of
multiple levels by using a state model [9]. This study classifies
adaptation as structural and behavioral, and suggests that a
system is described by state models. State models are located at
different levels; therefore, lower-level models are verified at an
upper-level model. Further, model checking is used to verify the
models. These studies suitably apply model checking and state
machine in self-adaptive software design and evaluation.
However, they are optimized during pre-processing and post-
processing; therefore, these approaches are not suitable for
runtime verification.

Probabilistic verification has also been used for self-adaptive
software at runtime [5-6]. The probabilistic model is pre-
computed and translated as functions expressions. The final step
in this approach is the generation of a verification condition set;
this condition set is efficiently evaluated at runtime when
changes occur. Thus, this approach supports sensitivity analysis.
However, we assume that the probabilistic approach has
inherent problems because the environment condition is not
predictable in self-adaptive software at runtime. Therefore, we
propose an environment-condition-based transition system
model for the design and verification of a self-adaptive software.
Our proposed approach attempts to solve the problems in
previous related studies. The challenges addressed are as
follows: verification at runtime, avoidance of the potential state-
explosion problem.

3. PROPOSED APPROACH
3.1 Overview
We propose an approach for the design and verification of a
transition system model for self-adaptive software. Self-adaptive
software is described as a transition system model in order to
integrate it with traditional verification and validation
techniques (e.g., model checking). Therefore, we assume that
self-adaptive software is designed as transition systems, and
transitions of a designed model can be monitored. In addition,
we applied model-checking theories (e.g., reachability) to verify
self-adaptive software. Figure 1 shows an overview of the
proposed approach, which consists of two phases: pre-
computing phase and runtime phase.

Figure 1: Overview of proposed approach for design and
verification of self-adaptive software

The pre-computing phase models the system according to the
traditional transition system model and abstracts the designed
transition system into equation forms; then, the runtime
transition model is reconstructed. The methods to design the
model and extract the equations are described in Sections 3.2
and 3.3, respectively. The runtime phase monitors the system
and analyzes the system based on equations that are extracted in
the pre-computing phase. In the runtime phase, the system
monitors the transitions of the designed transition model and can
analyze only those equations that consist of transitions.

3.2 Transition System Model for Runtime
Verification
We assume that a self-adaptive software is described as a
transition system. In order to describe self-adaptive software, we
apply the traditional transition system model [4]. The transition
system is a tuple (S, Act, →, AP, L), where

 S is a set of states,
 Act is a set of actions,
 → ⊆ S × Act × S is a set of transition,
 s0 ⊆ S, and it is the initial state,
 AP is a set of atomic propositions, and
 L: S → 2AP is a labeling function.

We assume that only one initial state exists, and transition
values are described as Boolean or number values (i.e., 0 or 1).
Further, the transition value can be monitored at runtime.
However, this transition system is not suitable for runtime
verification owing to a limitation; therefore, we propose a
transition system for the verification of self-adaptive software at
runtime by using the designed transition system. The proposed
transition system is named Runtime Transition System (RTS).

RTS is a tuple (S, Act, →, AP, L), where

 S is a set of states,
 Act is a set of actions,
 States are classified into two types, {Snormal, Sreach},
 s0 ⊆ S, and it is the initial state,
 → is a set of transitions, and it is classified into two

types {→normal, →reach},
 →normal ⊆ Snormal × Act × Snormal is a transition relation,
 →reach ⊆ s0 × Act × Sreach is a transition relation, and it

is represented as an equation,
 AP is a set of atomic propositions, and
 L: S → 2AP is a labeling function.

RTS consists of two types of states and transitions: Snormal is a
normal state that does not impact self-adaptation, and normal
transition (i.e., →normal) indicates the translation between normal
states; Sreach is a set of states for which the software requirement
is not satisfied in the pre-designed system model, and hence, if
the software reaches this state, it could lead to abnormal
termination or the occurrence of an error. Therefore, the
reachable paths from the initial state (i.e., s0) to each state of
Sreach must be verified at runtime in a self-adaptive software
environment. As described in Section 3.1, RTS is extracted with
a pre-designed system model, and reachable transition (i.e.,
→reach) indicates all possible paths from the initial state to each
Sreach state. By using the semantics of temporal modalities [4],
the reachable transition for i is given below:

→reach (i) = ∪{∃◇Sreach (i)} (1)

66

∃◇“ Sreach (i)” indicates that there exists a path that eventually
reaches the ith state of Sreach. Therefore, “→reach (i)” is the union
of the reachable paths to the ith state. Section 3.3 describes the
method to extract a reachable transition from the pre-designed
transition system and the method to translate the equations.

3.3 Extract Reachability from Transition
System for Runtime Verification
In this study, we modified the state elimination algorithm [11] to
extract the reachability of the transition system model. The
method for reachability starts from Sreach states to initial state to
avoid iteration problems. We describe the abstracting algorithm
by using a simple transition system model (i.e., Figure 2).

Figure 2: Process for extraction of reachability equation
from transition model

RTS is extracted from the designed transition system in four
steps. First, the reachable states are selected. As mentioned in
Section 3.2, the reachable state indicates that the software
requirement is not satisfied or contains potential errors. In the
example, we select state “4” as a reachable state. After a
reachable state is selected, path search is performed. The search
starts from the reachable state; in the example, state “4” is the
starting point for the path search (i.e., step 2-a in Figure 2).
Then, the search process extends the path by using the “from”
transition. In Figure 2, state “4” is translated from states “3” and
“2”; therefore, the path is extended using these states (i.e., step
2-b). Next, the search process extends the path iteratively by
using the “from” transition until the initial state or iteration state
is reached. The search is stopped at the initial state because
reaching the initial state indicates that a reachable path has been
found. In addition, the search is stopped when an iteration
appears because an infinite loop could be generated, thus
leading to one of the problems in model checking (i.e., state
explosion). In step 2-c, state “3” has an iterative “from”
transition; therefore, the path search is stopped at state “3”.
Further, state “2” has a transition from initial state “0”; therefore,
the path search is stopped at state “0”. In the example (i.e., step
2-c), path searching is continued for state “1”. The path-search
process is continued until there is no state for extension. In step
2-d, there is no state for extension because all the states are
connected with the initial state or iteration state.

After the path search, the paths are translated to equation form.
In this process (i.e., step 3-a), an iterative path is deleted to

satisfy the reachability definition described in section 3.1. Then,
each path is translated to the equation form (i.e., step 3-b).
Linear paths are converted to “multiplication” operations or
“and (&&)” operations because a linear path indicates that if
one transition value is unable to reach the next state, the
remaining states are also unreachable. For example, in step 3-b,
if transition “d” is unable to reach the next state, then a path
containing “d” (e.g., 0→1→3→4) cannot reach state “4”. In
addition, parallel paths are converted to “plus” operations or “or
(||)” operations because even if one path cannot reach Sreach(i),
an alternative path is possible. In step 3-b, if one path (e.g.,
0→1→3→4) is impossible, another path is possible (e.g.,
0→2→4). After paths are translated to the equation form, a pre-
designed transition model is reconstructed as an RTS by using
the equations extracted in step 3. In addition, the extracted
equations are calculated for the self-adaptive software at
runtime in order to verify the system status. We implemented a
prototype of the proposed method by using Java SE (version
1.8) to ensure compatibility of various devices. A detailed
description of the implementation is outside the scope of this
manuscript; therefore, we have omitted the implementation
details.

4. EMPIRICAL EVALUATION
This section discusses a set of experiments for empirical
evaluation. For the experiments, we generated a data set that
would yield the worst performance with the proposed method.
With regard to the connectivity of the transition system, all
generated transition system has at least one in-transition and one
out-transition, except the start-state and end-state. The end-state
has only one in-transition, and we assume that the abstracted
state is the end-state. Therefore, all transitions must be searched
to obtain the RTS. The test set consists of 20 finite state
machines for each state size, and we calculate the mean of each
data set. The experiment measures the time required to abstract
the transition system. The results obtained from the increasing
state sizes are shown in Figure 3. In the experimental setup, the
hardware consists of Intel® Core™ i7-2620M CPU (2.7 GHz)
and 8 GB memory. The software environment consists of
Windows 7 Professional and Java 1.8.

Figure 3: Results of equation extraction with increasing state
number

We observe that as the state size increases, the computation time
required increases. When the state size is 45, only 341 ms are
required. We consider that the pre-computing phase is executed
before the runtime phase. Therefore, runtime computation time
does not affect the execution of reachability verification at
runtime.

67

After the experiments for the pre-computing phase, we
performed experiments on runtime performance by using data
sets from previous experiments and RTSs. We obtained
equation results by randomly generating transition values (i.e.,
from 0 to 1). We compared the proposed method and the model-
checking tools. We selected NuSMV1 and CadenceSMV2 as the
comparison tools. NuSMV and CadenceSMV, which is one of
the powerful tools in model verification, is a symbolic model
checker; further, these tools are open-source. In the experiments,
we measured the time required to achieve “reachability” from
the start to the end-state by using NuSMV and CadenceSMV.
Based on intuitive semantics of temporal modalities [4],
“reachability” is denoted as:

∃◇φ = stateend (2)

Equation φ (i.e., equation 2) indicates that there exists a path
that eventually reaches the end-state. In order to calculate φ,
NuSMV and CadenceSMV can obtain only one path from the
start-state to the end-state. The results of runtime performance
comparison are shown in Figure 4.

Figure 4: Results of runtime comparison with increasing
states

The results show that the proposed method performs better than
the path-finding (i.e., reachability) of NuSMV and Cadence
SMV. NuSMV and CadenceSMV differ from the proposed
method when the node size increases. NuSMV and
CadenceSMV exhibit monotonic change with increasing nodes.
These tools terminate model checking when they find a path that
reaches the specific state. In equation φ, these tools end their
model checking when a path reaches an end-state. Therefore,
these model checkers provide only a single path to reach an end-
state; however, the proposed method can consider various
scenarios to reach an end-state. Further, the proposed method is
faster than the other tools. The proposed method has a pre-
compile process that converts the pre-designed transition system
to RTS. Although the proposed method includes a pre-compile
process, it has the advantage of saving time at runtime by
considering several model-checking cases.

5. CONCLUSION
In this manuscript, we have proposed a runtime verification
approach for self-adaptive software by using reachability. The
proposed approach has two phases. In the first phase, the
process is translated from a pre-designed translation system to a
runtime translating system model. In this phase, the set of states

1 http://nusmv.fbk.eu/
2 http://www.kenmcmil.com/smv.html

containing a potential error is selected, and the path to reach that
set of states is calculated. The calculated reachable paths are
translated into the equation form. In the second phase, the
transition values described in the transition model are monitored,
and then, the equations extracted in the previous phase are
analyzed. We performed experiments with other model-
checking tools; the experiments demonstrate that the proposed
approach is suitable for runtime verification.

In this study, we demonstrate the suitability of the proposed
approach; however, this approach must be integrated in the self-
adaptive lifecycle. Therefore, we plan to extend the proposed
approach with a MAPE (monitoring, analyzing, planning and
executing)-loop in an IoT-based environment. Further, we will
extend our method to include a logical model such as linear
temporal logic (LTL) or computational tree logic (CTL) in order
to provide a specific description of software requirements.

6. ACKNOWLEDGMENTS
This research was supported by the Next-Generation
Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT & Future Planning (NRF
2012M3C4A7033346).

7. REFERENCES
[1] M. Salehie and L. Tahvildari. Self-adaptive software:

Landscape and research challenges. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 4(2):14, 2009.

[2] G. Tamura, N. M. Villegas, et al. Towards practical¨ runtime
verification and validation of self-adaptive software systems.
In Software Engineering for Self-Adaptive Systems II, pages
108–132. Springer, 2013.

[3] R. De Lemos, H. Giese, et al. Software engineering for self-
adaptive systems: A second research roadmap. In Software
Engineering for Self-Adaptive Systems II, pages 1–32.
Springer, 2013.

[4] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model
checking. MIT press, 2008.

[5] A. Filieri and G. Tamburrelli. Probabilistic verification at
runtime for self-adaptive systems. In Assurances for Self-
Adaptive Systems, pages 30–59. Springer, 2013.

[6] A. Filieri, G. Tamburrelli, and C. Ghezzi. Supporting self-
adaptation via quantitative verification and sensitivity analysis
at run time. IEEE Transactions on Software Engineering,
42(1):75–99, 2016.

[7] J. Cámara, and R. de Lemos. Evaluation of resilience in self-
adaptive systems using probabilistic model-checking. In
Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pages
53–62. IEEE Press, 2012.

[8] K. Johnson, R. Calinescu, and S. Kikuchi. An incremental
verification framework for component-based software systems.
In Proceedings of the 16th International ACM Sigsoft
symposium on Component-based software engineering, pages
33–42. ACM, 2013.

[9] L. Tesei, E. Merelli, and N. Paoletti. Multiple levels in self-
adaptive complex systems: A state-based approach. In
Proceedings of the European Conference on Complex Systems
2012, pages 1033–1050. Springer, 2013.

[10] W. Yang, C. Xu, Y. Liu, C. Cao, X. Ma, and J. Lu. Verifying
self-adaptive applications suffering uncertainty. In
Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering, pages 199–210. ACM,
2014.

[11] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to
automata theory, languages, and computation. Addison-
Wesley. 2007

68

	Start
	TOC 1
	2
	2017_이의종_SAC2017
	2017_NRF_CS_Conf_list.pdf
	학술대회 목록(안)

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryList_V1
 qi2base

