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ABSTRACT1 
Self-adaptive software can change its own behavior in order to 
achieve an intended objective in a changing environment. 
Consequently, self-adaptive software requires practical runtime 
verification and validation. We propose an approach for runtime 
verification of self-adaptive software by using a designed 
transition system model. The proposed approach consists of two 
phases: pre-computing phase and runtime phase. In the pre-
computing phase, we assume that the self-adaptive software is 
designed as a transition system. In this phase, the proposed 
approach translates the designed transition system into equations 
for runtime verification. For translation, we suggest an 
algorithm based on state elimination and reachability. After the 
pre-computing phase, the results of the translated equations are 
verified in the runtime phase. In order to demonstrate the 
suitability of our proposed approach, we performed experiments 
to evaluate the performance of the pre-processing phase and the 
runtime phase. In comparison with other model-checking tools, 
our approach achieved excellent results.  

CCS Concepts 
• Software and its engineering → Software verification and 
validation • Software and its engineering → Model-driven 
software engineering 
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1. INTRODUCTION 
In recent times, the emergence of various software platforms has 
resulted in a varied software environment. Further, owing to 
developments in mobile devices and Internet of Things (IoT), 
software systems must operate in various environments. Self-
adaptive software aims to change its own behavior or structure 
in a changing environment at runtime [1]. The characteristics of 
self-adaptive software make it suitable for adoption in the 
current scenario that requires software to operate in various 
environments. Design model and verification are important 
elements in self-adaptive software. Further, the demand for 
research related to practical verification at runtime has increased 
[2, 3]. Model checking is an effective static verification method 
to verify software described by a transition system [2-4]. 
Although model checking demonstrates excellent verification 
performance, it has a major problem known as the state 
explosion problem. However, in spite of this limitation, the 
method has been applied in various studies to verify self-
adaptive software [5-10]. The challenges in earlier studies 
include unsuitability at runtime, state explosion problems, or the 
absence of a mechanism to apply real software. In order to solve 
such problems, we propose a self-adaptive software framework 
with runtime verification of the transition system. The proposed 
approach consists of two phases: a pre-computing phase that is 
responsible for the design and extraction of the transition system 
model for runtime performance, and a runtime phase that is 
responsible for monitoring and analyzing the designed transition 
model at runtime. We performed an empirical evaluation to 
demonstrate the excellent performance of our proposed 
approach. 

2. RELATED WORK 
In this section, we introduce several previous studies related to 
model checking on self-adaptive software and discuss their 
differences to the proposed approach. A study used model 
checking for verification of software modeling. It used model 
checking to evaluate resilience [7]. This study describes 
software and its requirements in terms of a model and 
computational tree logic (CTL). The model and CTL equation 
are used to evaluate the resilience after the adaptive activity 
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ends. This study used model checking with its characteristics. 
Another study describes self-adaptive software in the form of 
multiple levels by using a state model [9]. This study classifies 
adaptation as structural and behavioral, and suggests that a 
system is described by state models. State models are located at 
different levels; therefore, lower-level models are verified at an 
upper-level model. Further, model checking is used to verify the 
models. These studies suitably apply model checking and state 
machine in self-adaptive software design and evaluation. 
However, they are optimized during pre-processing and post-
processing; therefore, these approaches are not suitable for 
runtime verification. 

Probabilistic verification has also been used for self-adaptive 
software at runtime [5-6]. The probabilistic model is pre-
computed and translated as functions expressions. The final step 
in this approach is the generation of a verification condition set; 
this condition set is efficiently evaluated at runtime when 
changes occur. Thus, this approach supports sensitivity analysis. 
However, we assume that the probabilistic approach has 
inherent problems because the environment condition is not 
predictable in self-adaptive software at runtime. Therefore, we 
propose an environment-condition-based transition system 
model for the design and verification of a self-adaptive software. 
Our proposed approach attempts to solve the problems in 
previous related studies. The challenges addressed are as 
follows: verification at runtime, avoidance of the potential state-
explosion problem. 

3. PROPOSED APPROACH 
3.1 Overview 
We propose an approach for the design and verification of a 
transition system model for self-adaptive software. Self-adaptive 
software is described as a transition system model in order to 
integrate it with traditional verification and validation 
techniques (e.g., model checking). Therefore, we assume that 
self-adaptive software is designed as transition systems, and 
transitions of a designed model can be monitored. In addition, 
we applied model-checking theories (e.g., reachability) to verify 
self-adaptive software. Figure 1 shows an overview of the 
proposed approach, which consists of two phases: pre-
computing phase and runtime phase. 

 

Figure 1: Overview of proposed approach for design and 
verification of self-adaptive software 

   

The pre-computing phase models the system according to the 
traditional transition system model and abstracts the designed 
transition system into equation forms; then, the runtime 
transition model is reconstructed. The methods to design the 
model and extract the equations are described in Sections 3.2 
and 3.3, respectively. The runtime phase monitors the system 
and analyzes the system based on equations that are extracted in 
the pre-computing phase. In the runtime phase, the system 
monitors the transitions of the designed transition model and can 
analyze only those equations that consist of transitions.  

3.2 Transition System Model for Runtime 
Verification 
We assume that a self-adaptive software is described as a 
transition system. In order to describe self-adaptive software, we 
apply the traditional transition system model [4]. The transition 
system is a tuple (S, Act, →, AP, L), where 

 S is a set of states, 
 Act is a set of actions, 
 → ⊆ S × Act × S is a set of transition, 
 s0 ⊆ S, and it is the initial state, 
 AP is a set of atomic propositions, and 
 L: S → 2AP is a labeling function. 

We assume that only one initial state exists, and transition 
values are described as Boolean or number values (i.e., 0 or 1). 
Further, the transition value can be monitored at runtime. 
However, this transition system is not suitable for runtime 
verification owing to a limitation; therefore, we propose a 
transition system for the verification of self-adaptive software at 
runtime by using the designed transition system. The proposed 
transition system is named Runtime Transition System (RTS). 

RTS is a tuple (S, Act, →, AP, L), where 

 S is a set of states, 
 Act is a set of actions, 
 States are classified into two types, {Snormal, Sreach}, 
 s0 ⊆ S, and it is the initial state, 
 → is a set of transitions, and it is classified into two 

types {→normal, →reach}, 
 →normal ⊆ Snormal × Act × Snormal is a transition relation, 
 →reach ⊆ s0 × Act × Sreach is a transition relation, and it 

is represented as an equation, 
 AP is a set of atomic propositions, and 
 L: S → 2AP is a labeling function.  

RTS consists of two types of states and transitions: Snormal is a 
normal state that does not impact self-adaptation, and normal 
transition (i.e., →normal) indicates the translation between normal 
states; Sreach is a set of states for which the software requirement 
is not satisfied in the pre-designed system model, and hence, if 
the software reaches this state, it could lead to abnormal 
termination or the occurrence of an error. Therefore, the 
reachable paths from the initial state (i.e., s0) to each state of 
Sreach must be verified at runtime in a self-adaptive software 
environment. As described in Section 3.1, RTS is extracted with 
a pre-designed system model, and reachable transition (i.e., 
→reach) indicates all possible paths from the initial state to each 
Sreach state. By using the semantics of temporal modalities [4], 
the reachable transition for i is given below: 

→reach (i) = ∪{∃◇Sreach (i)}                        (1) 
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∃◇“ Sreach (i)” indicates that there exists a path that eventually 
reaches the ith state of Sreach. Therefore, “→reach (i)” is the union 
of the reachable paths to the ith state. Section 3.3 describes the 
method to extract a reachable transition from the pre-designed 
transition system and the method to translate the equations.  

3.3 Extract Reachability from Transition 
System for Runtime Verification 
In this study, we modified the state elimination algorithm [11] to 
extract the reachability of the transition system model. The 
method for reachability starts from Sreach states to initial state to 
avoid iteration problems. We describe the abstracting algorithm 
by using a simple transition system model (i.e., Figure 2). 

Figure 2: Process for extraction of reachability equation 
from transition model 

RTS is extracted from the designed transition system in four 
steps. First, the reachable states are selected. As mentioned in 
Section 3.2, the reachable state indicates that the software 
requirement is not satisfied or contains potential errors. In the 
example, we select state “4” as a reachable state. After a 
reachable state is selected, path search is performed. The search 
starts from the reachable state; in the example, state “4” is the 
starting point for the path search (i.e., step 2-a in Figure 2). 
Then, the search process extends the path by using the “from” 
transition. In Figure 2, state “4” is translated from states “3” and 
“2”; therefore, the path is extended using these states (i.e., step 
2-b). Next, the search process extends the path iteratively by 
using the “from” transition until the initial state or iteration state 
is reached. The search is stopped at the initial state because 
reaching the initial state indicates that a reachable path has been 
found. In addition, the search is stopped when an iteration 
appears because an infinite loop could be generated, thus 
leading to one of the problems in model checking (i.e., state 
explosion). In step 2-c, state “3” has an iterative “from” 
transition; therefore, the path search is stopped at state “3”. 
Further, state “2” has a transition from initial state “0”; therefore, 
the path search is stopped at state “0”. In the example (i.e., step 
2-c), path searching is continued for state “1”. The path-search 
process is continued until there is no state for extension. In step 
2-d, there is no state for extension because all the states are 
connected with the initial state or iteration state.  

After the path search, the paths are translated to equation form. 
In this process (i.e., step 3-a), an iterative path is deleted to 

satisfy the reachability definition described in section 3.1. Then, 
each path is translated to the equation form (i.e., step 3-b). 
Linear paths are converted to “multiplication” operations or 
“and (&&)” operations because a linear path indicates that if 
one transition value is unable to reach the next state, the 
remaining states are also unreachable. For example, in step 3-b, 
if transition “d” is unable to reach the next state, then a path 
containing “d” (e.g., 0→1→3→4) cannot reach state “4”. In 
addition, parallel paths are converted to “plus” operations or “or 
(||)” operations because even if one path cannot reach Sreach(i), 
an alternative path is possible. In step 3-b, if one path (e.g., 
0→1→3→4) is impossible, another path is possible (e.g., 
0→2→4). After paths are translated to the equation form, a pre-
designed transition model is reconstructed as an RTS by using 
the equations extracted in step 3. In addition, the extracted 
equations are calculated for the self-adaptive software at 
runtime in order to verify the system status. We implemented a 
prototype of the proposed method by using Java SE (version 
1.8) to ensure compatibility of various devices. A detailed 
description of the implementation is outside the scope of this 
manuscript; therefore, we have omitted the implementation 
details. 

4. EMPIRICAL EVALUATION 
This section discusses a set of experiments for empirical 
evaluation. For the experiments, we generated a data set that 
would yield the worst performance with the proposed method. 
With regard to the connectivity of the transition system, all 
generated transition system has at least one in-transition and one 
out-transition, except the start-state and end-state. The end-state 
has only one in-transition, and we assume that the abstracted 
state is the end-state. Therefore, all transitions must be searched 
to obtain the RTS. The test set consists of 20 finite state 
machines for each state size, and we calculate the mean of each 
data set. The experiment measures the time required to abstract 
the transition system. The results obtained from the increasing 
state sizes are shown in Figure 3. In the experimental setup, the 
hardware consists of Intel® Core™ i7-2620M CPU (2.7 GHz) 
and 8 GB memory. The software environment consists of 
Windows 7 Professional and Java 1.8.  
 

 

Figure 3: Results of equation extraction with increasing state 
number 

We observe that as the state size increases, the computation time 
required increases. When the state size is 45, only 341 ms are 
required. We consider that the pre-computing phase is executed 
before the runtime phase. Therefore, runtime computation time 
does not affect the execution of reachability verification at 
runtime.  
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After the experiments for the pre-computing phase, we 
performed experiments on runtime performance by using data 
sets from previous experiments and RTSs. We obtained 
equation results by randomly generating transition values (i.e., 
from 0 to 1). We compared the proposed method and the model-
checking tools. We selected NuSMV1 and CadenceSMV2 as the 
comparison tools. NuSMV and CadenceSMV, which is one of 
the powerful tools in model verification, is a symbolic model 
checker; further, these tools are open-source. In the experiments, 
we measured the time required to achieve “reachability” from 
the start to the end-state by using NuSMV and CadenceSMV. 
Based on intuitive semantics of temporal modalities [4], 
“reachability” is denoted as: 

∃◇φ = stateend                                                   (2) 

Equation φ (i.e., equation 2) indicates that there exists a path 
that eventually reaches the end-state. In order to calculate φ, 
NuSMV and CadenceSMV can obtain only one path from the 
start-state to the end-state. The results of runtime performance 
comparison are shown in Figure 4.   

 

Figure 4: Results of runtime comparison with increasing 
states 

The results show that the proposed method performs better than 
the path-finding (i.e., reachability) of NuSMV and Cadence 
SMV. NuSMV and CadenceSMV differ from the proposed 
method when the node size increases. NuSMV and 
CadenceSMV exhibit monotonic change with increasing nodes. 
These tools terminate model checking when they find a path that 
reaches the specific state. In equation φ, these tools end their 
model checking when a path reaches an end-state. Therefore, 
these model checkers provide only a single path to reach an end-
state; however, the proposed method can consider various 
scenarios to reach an end-state. Further, the proposed method is 
faster than the other tools. The proposed method has a pre-
compile process that converts the pre-designed transition system 
to RTS. Although the proposed method includes a pre-compile 
process, it has the advantage of saving time at runtime by 
considering several model-checking cases. 

5. CONCLUSION 
In this manuscript, we have proposed a runtime verification 
approach for self-adaptive software by using reachability. The 
proposed approach has two phases. In the first phase, the 
process is translated from a pre-designed translation system to a 
runtime translating system model. In this phase, the set of states 
                                                                 
1 http://nusmv.fbk.eu/ 
2 http://www.kenmcmil.com/smv.html 

containing a potential error is selected, and the path to reach that 
set of states is calculated. The calculated reachable paths are 
translated into the equation form. In the second phase, the 
transition values described in the transition model are monitored, 
and then, the equations extracted in the previous phase are 
analyzed. We performed experiments with other model-
checking tools; the experiments demonstrate that the proposed 
approach is suitable for runtime verification. 

In this study, we demonstrate the suitability of the proposed 
approach; however, this approach must be integrated in the self-
adaptive lifecycle. Therefore, we plan to extend the proposed 
approach with a MAPE (monitoring, analyzing, planning and 
executing)-loop in an IoT-based environment. Further, we will 
extend our method to include a logical model such as linear 
temporal logic (LTL) or computational tree logic (CTL) in order 
to provide a specific description of software requirements.  
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